Automated finishing and polishing technology for cast iron parts

How to deburr, descale, polish, brighten the cast iron parts?

Items cast from molten iron are collectively called cast iron parts. Due to the influence of the manufacturing process, defects such as pores, pinholes, slag inclusions, cracks, pits, rust spots, burrs, and flash often occur. Do you know how to automatically remove burrs, flash, rust and scale, and polish and brighten cast iron parts? In this case, we will share the process technology and methods of deburring, derusting and descaling, and polishing brightness of an electric hardware used in the power industry – steel foot cast iron parts. This polishing process solution is also applicable to the surface polishing of other hard metal casting parts.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

deburring, derusting, descaling, polishing, brightening effect of precision bearing steel casting iron feet

1. Cast iron steel feet before polishing
The surface burrs and oxide scale of cast iron feet before polishing

Materials:

cast iron

Appearance:

thick oxide skin on the surface

Shape:

barbell-shaped iron castings

Size:

40*200MM

Pre-polishing process:

rolling

Post-polishing process:

galvanizing

2. Finishing and polishing requirements
  • deburring, descaling
  • smooth, bright surface, no burrs, no oxide scale
3. Cast iron steel foot polishing process details:
Process steps (1) rough finishing of deburring, descaling (2) fine polishing (3) vibratory dryer
Machinery and equipment vibratory finishing machine vibratory finishing machine vibratory dryer
Speed highest highest highest
Tumbling media Angle cut cylinder ceramic media Spherical stainless steel media corn cob polishing media
Abrasive media to workpiece ratio 4:1 6:1 8:1
Finishing and polishing compound finishing liquid polishing liquid no
Water appropriate amount,the liquid level does not exceed the tumbling media appropriate amount,the liquid level does not exceed the tumbling media no
Polishing time 60 minutes 30 minutes 15 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water vibratory drying
4. Cast iron feet after finishing and polishing
deburring, descaling, polishing, brightening of steel foot cast iron parts

rough finishing

steel foot cast iron parts after finishing and polishing

after fine finishing and polishing

5. Additional instructions
  • Cast iron parts are generally medium-to-large product components, and most of the surface treatments are done by sandblasting and shot blasting. However, this product is small in size and large in quantity, with a daily output of several tons. In order to improve efficiency and surface treatment quality, a vibratory finisher is used with heavy-cutting-force angle cut cylinder tumbling media for rough finishing. The sharp edge of the ceramic media can reach into grooves, corners, and gaps to remove burrs and oxide layers.
    For brightening polishing, a general-purpose vibratory polishing machine is used. The polishing media is made of stainless steel ball specially designed for polishing brightness, which can improve the surface brightness and achieve a shiny effect.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in a anti-rust liquid for anti-rust treatment after polishing. Finally, a vibrating dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case, we demonstrated the process of deburring, descaling, derusting, polishing, brightening of a steel foot of cast iron product using a polishing machine.
  • If you need professional technical support for the following polishing issues of cast steel parts, you can refer to the above cases:
    Polishing of cast iron parts
    How long does it usually take to polish cast iron parts
    Methods for deburring cast iron parts
    Automation of deburring cast iron parts
    Rust removal of cast iron parts
    How to remove rust from cast iron
    How to remove oxide scale from cast iron parts
    What are the methods for removing rust from cast iron parts
    How to remove rust from cast iron parts
    Polishing of cast iron parts
    Polishing of castings
    How to polish iron products
    Polishing and finishing of cast iron
    Polishing process of cast iron
    How to remove burrs from iron parts
    Descaling of castings
    Polishing process of cast iron
    What are the methods and techniques for polishing castings
    Polishing technology of pig iron
    Polishing process of electric hardware

How to deburr, descale, polish carbide mechanical seal parts?

Finishing and polishing technology of mechanical seal parts of cemented carbide products

Mechanical seals are precise and complex basic mechanical components. Commonly used metal materials include hard alloys (such as tungsten carbide), high silicon iron, nickel-chromium steel, chrome steel, bronze, carbon steel and cast iron, etc., which will produce burrs, flash, scratches, oxide scale and other defects during the manufacturing process. Do you know what kind of finishing and polishing process mechanical seal parts need to go through to obtain a satisfactory surface effect? ​​In this case, we will share the process technology and methods of deburring, derusting, descaling, polishing and brightening of a hard alloy mechanical seal product. This polishing process solution is also suitable for the surface polishing of sealing parts made by other hard metal materials.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

deburring, derusting and polishing effect of carbide mechanical seal

1. Cemented carbide mechanical seal before polishing
burrs and oxide scale on the surface of mechanical seals of carbide parts before polishing

Materials:

tungsten carbide

Appearance:

edge burrs, surface oxide scale

Shape:

circular

Size:

D 50MM

Pre-polishing process:

powder metallurgy

Post-polishing process:

product assembly

2. Finishing and polishing requirements
  • chamfer and remove flash, grooves without burrs.
  • smooth, bright surface, no burrs, no oxide scale.
3. Details of carbide mechanical seal polishing process:
Process steps (1) rough finishing of chamfering, deburring, descaling (2) fine polishing (3) anti-rust drying
Machinery and equipment centrifugal disc finishing machine centrifugal barrel finishing machine vibratory dryer
Speed highest highest highest
Tumbling media straight cut tri-angle ceramic media 3P finishing media corn cob drying media
Abrasive media to workpiece ratio 4:1 6:1 8:1
Finishing and polishing compound finishing liquid polishing liquid no
Water appropriate amount, liquid level is 20mm above the tumbling media appropriate amount, liquid level is 20mm above the tumbling media no
Polishing time 30 minutes 30 minutes 15 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water vibratory drying
4. Finishing and polishing effect of cemented carbide mechanical seal
deburring, descaling, chamfering, polishing, brightening effect of cemented carbide parts mechanical seal
mass finishing, polishing, burnishing, brightening effect of cemented carbide parts mechanical seal

5. Additional instructions
  • The hardness of tungsten carbide is generally between HRA87 and 94. The product volume is not large, so a centrifugal disc finisher is used, with heavy cutting force straight cut tri-angle ceramic media for rough finishing. The sharp tip of the tumbling media can reach into the groove to remove burrs and chamfers.
    Fine polishing uses a centrifugal barrel finisher with high centrifugal force, so the tumbling media uses high-hardness 3P fine polishing media, which can cut lightly, further reduce the roughness and improve the surface brightness.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in a anti-rust liquid for anti-rust treatment after polishing. Finally, a a href=”http://www.shinetec.tech/index.php/en/product/vibratory-dryer-vibrating-drying-machine/” target=”_blank” rel=”noopener”>vibrating dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case study, we demonstrate the process of chamfering, deburring, descaling, polishing and brightening the surface of a mechanical seal part made of tungsten carbide.
  • If you need professional technical support for the following mechanical seal product polishing issues, you can refer to the above cases:
    Mechanical seal polishing process technology
    Mechanical seal deburring process technology
    Mechanical parts polishing process technology
    Mechanical parts deburring process technology
    Metal parts polishing
    What abrasive is suitable for carbide polishing
    Introduction to carbide polishing technology
    Carbide deburring polishing process
    How to polish carbide
    What to use for polishing carbide
    Methods for descaling of carbide
    Cemented carbide surface polishing
    What finishing and polishing materials are used for carbide
    Mirror polishing of carbide

Deburring,descaling and polishing method of copper alloy die castings (floor sockets)

How to chamfer, deburr, descale, polish and brighten copper alloy die castings?

Copper alloy die casting is a mature and versatile production process, which is used to manufacture a variety of hardware parts products. Commonly copper alloys include copper-aluminum alloy, copper-zinc alloy, copper-nickel alloy, etc. Die casting products will produce burrs, flash, scratches, oxide scale and other defects during the production process. Do you know what kind of finishing and polishing process copper alloy die castings need to go through to obtain a satisfactory surface effect? ​​In this case, we will share a copper alloy floor socket deburring, descaling, polishing, brightening process technology and methods. This polishing process solution is also suitable for the surface polishing of brass, zinc alloy, aluminum alloy, magnesium alloy and other products.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

deburring, derusting, descaling, polishing of copper alloy die castings (floor outlets)

1. copper alloy floor outlet before polishing
copper alloy die castings (floor outlets) surface burrs and oxide scale before polishing

Materials:

copper-zinc alloy

Appearance:

burrs on the edges,oxide scale on the surface

Shape:

square

Size:

120*120MM

Pre-polishing process:

die casting

Post-polishing process:

electroplating

2. requirements for polishing
  • chamfer and remove flash, grooves without burrs.
  • smooth and bright surface, no burrs, no oxide scale
3. Copper alloy floor outlets polishing process details:
Process steps (1) rough finishing, chamfering, deburring, descaling (2) fine polishing (3) vibratory drying
Machine and equipment vibratory finishing machine vibratory finishing machine vibratory dryer
Amplitude and speed highest speed highest speed highest speed
Tumbling media Cone resin media Spherical white corundum finishing media corn cob polishing media
Abrasive media to workpiece ratio 4:1 6:1 8:1
Finishing and polishing compound finishing liquid polishing liquid no
Water appropriate amount, the liquid level does not exceed the tumbling media appropriate amount, the liquid level does not exceed the tumbling media no
Polishing time 60 minutes 30 minutes 15 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water vibrating drying
4. copper alloy floor outlet after finishing and polishing
copper alloy floor outlet chamfering, deburring, descaling, polishing effect
copper alloy floor socket chamfering, deburring, descaling, polishing effect

5. Additional instructions
  • Copper alloy floor outlets have low hardness and are medium-sized product parts with a large daily processing quantity. Therefore, a vibratory polishing machine is used with a cone plastic media with low hardness to perform rough finishing. The conical tip can touch deep into the groove to remove burrs and chamfers.
    Fine polishing and brightening is also achieved by using a vibrating finishing machine, with spherical white corundum finishing media with high hardness and light cutting force, which can cut a small amount, further reduce the roughness and improve the surface brightness.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in the anti-rust liquid for anti-rust treatment after polishing. Finally, a vibrating dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case study, we demonstrate the process of chamfering, deburring, descaling and polishing the surface of a copper alloy die-casting component, a floor socket.
  • If you need professional technical support for the following product polishing issues, you can refer to the above cases:
    Die casting surface treatment process
    Die casting polishing process
    Die casting deburring process
    Die casting deburring method
    How to remove oxide scale from die casting
    Descaling of die casting aluminum
    Copper alloy die casting product polishing process
    Copper alloy hardware polishing
    Copper alloy mechanical polishing
    Copper alloy polishing skills
    Copper alloy die casting deburring method
    How to deal with copper alloy die casting deburring
    Copper alloy deoxidation method
    Aluminum alloy die casting product polishing process
    Zinc alloy die casting product polishing
    Aluminum alloy die casting product deburring
    Aluminum alloy hardware polishing
    How to deburr zinc alloy hardware

Polishing technology and method of powder metallurgy products

How to chamfer, deburr and descale the powder metallurgy parts?

Powder metallurgy is an advanced industrial technology that uses metal powder (or a mixture of metal powder and non-metallic powder) as raw material, and forms various types of products through forming and sintering. It is very suitable for mass production. In addition, some materials and complex parts that cannot be prepared by traditional casting methods and machining methods can also be manufactured using powder metallurgy technology, so it has received much attention from the industry. Do you know what kind of finishing and polishing process powder metallurgy products need to go through to obtain a satisfactory surface effect? ​​In this case, we will share a process technology and method for chamfering, deburring, descaling, polishing and brightening of powder metallurgy gear parts. This polishing solution is also suitable for the surface polishing of powder sintered sprockets, bushings, structural parts, 3D printing products and metal powder injection molding products.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

deburring,derusting and polishing effects of powder metallurgy gear parts

1. The surface of powder metallurgy gear parts before polishing
burrs and scale of powder metallurgy gear parts before polishing

Materials:

Iron-copper powder mixture

Appearance:

burrs on the edges of the teeth and grooves,
oxide scale on the surface

Shape:

gear

Size:

35*50MM

Pre-polishing process:

powder metallurgy

Post-polishing process:

packing

2. Requirements for polishing
  • chamfering of tooth edge, deburring of the grooves.
  • smooth and brighten surface, no burrs, no oxide scale.
3. Powder metallurgy gear parts polishing process details:
Process steps (1) rough deburring,chamfering,descaling (2) fine polishing (3) anti-rust drying
Machine and equipment vibratory finishing machine vibratory finishing machine vibratory dryer
Amplitude and speed highest speed highest speed highest speed
Tumbling media angle cut cylinder ceramic media spherical white corundum finishing media no
Abrasive media to workpiece ratio 4:1 6:1 8:1
Finishing and polishing compound finishing liquid polishing liquid anti-rust liquid
Water appropriate amount, the liquid level does not exceed the tumbling media appropriate amount, the liquid level does not exceed the tumbling media no
Polishing time 60 minutes 30 minutes 30 minutes
Remark automatic separating and picking up, rinsing with water automatic separating and picking up, rinsing with water anti-rust liquid soaking, vibrating drying
4. Effect of powder metallurgy gear parts after finishing and polishing
powder metallurgy gear parts chamfering, deburring, descaling, polishing, brightening effect
chamfering, deburring, descaling, polishing, burnishing effect of powder metallurgy gear parts

5. Additional instructions
  • This powder metallurgy product is a small-sized workpiece, and the burrs are mainly concentrated on the the tooth edges. The daily processing quantity is large, so a vibrating finishing machine is used, and a heavy-cutting angle cut cylinder deburring tumbling media is used for rough finishing. The sharp corner of angle cut cylinder can reach into the grooves between the tooth edges to remove burrs and chamfer.
    Fine polishing and brightening is also achieved by using a vibratory polishing machine, with the high-hardness, light-cutting spherical white corundum finishing media for fine finishing, which can perform micro-cutting, further reduce roughness, and improve surface brightness.
  • Because the product processing quantity is large, the product separating can be done by using vibratory separator to improve efficiency.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in a rust inhibitor for anti-rust treatment after polishing. Finally, a vibrating dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case study, we demonstrate the process of surface chamfering, deburring, descaling, polishing and brightening of a powder metallurgy gear component.
  • This process solution is also suitable for surface polishing of powder metallurgy sprockets, bushings, structural parts, 3D printing products and metal powder injection molding products.

Can plasma finishing and polishing achieve a mirror polishing effect?

Plasma polishing has been widely used in fine polishing applications of high-end products, such as furniture and bathroom tableware industry: handles, handles, faucets, copper parts; glasses industry: glasses frames, glasses frames; aerospace manufacturing: aircraft engine blades; medical device manufacturing Industry: titanium alloy, stainless steel equipment and other fields.

1. What is plasma polishing?

Plasma polishing, also known as nano-polishing, is a new finishing and polishing process for deburring, descaling, and improving brightness on the surface of metal product workpieces. In essence, it is also electrolytic polishing. Under the action of large current, the electrolyte is vaporized and high-energy plasma is generated to impact the surface of the product to achieve a polishing effect. It is suitable for large quantities of special-shaped workpieces with complex curved surfaces to quickly and efficiently achieve a near-mirror polishing effect. So what kind of surface polishing effect can plasma polishing achieve? Today we will share a case in which deep-drawn stamping parts made of 304 stainless steel were treated with plasma polishing to remove burrs and oxide scale to achieve mirror polishing. Take a look at the specific advantages and disadvantages of this process and whether it can meet your finishing and polishing needs.
Let’s take a look at the comparison of the effects of plasma polishing on this stainless steel stamping part:

Surface effect of stainless steel deep-drawn stamping parts before plasma polishing

Surface effect of stainless steel stamping parts before plasma polishing(nano-polishing)

We can see that the surface of the original surface of this workpiece has lines left after cold rolling, and there are obvious stretch marks left after stretching on the edges. The upper opening has obvious burrs left after punching and cutting. It feels prickly and can cut your skin if you’re not careful.

Surface effect of stainless steel deep-drawn stamping parts after plasma polishing

Surface effect of stainless steel stamping parts after plasma polishing(nano-polishing)

Now the surface of the product is shiny, and the oxide scale on the internal and external surfaces has been removed. The original cold rolling marks are almost invisible when viewed from the front. The stretch marks on the edges have also become much reduced. The upper opening feels better to the touch. It should be smooth, no tingling feeling, and the burrs should have been removed.

2. Scope of application of plasma polishing

Now we fix the stainless steel deep drawing stamping part on the hanger and put it into the plasma polisher. After waiting for 2 minutes, you can see that its surface is now shiny and the original oxide layer has been completely removed. We Let’s take a look at the overall surface condition. The cold-rolled marks on the surface of the original part before polishing is still quite obvious. Look at the stretch marks on the edge. You can still see the obvious stretch lines. Let’s touch the cut part at the opening, the hand feels relatively rounded, does not irritate the hand, and the burrs have been removed. The internal and external surfaces of the entire product have uniform polishing quality and high brightness. It should be said that it is quite beautiful. Let’s sum it up. If your products are small pieces with relatively small burrs, smooth original surfaces condition, complex shapes, and large quantities, then plasma polishing can meet your needs and achieve a mirror polishing effect. If you want to remove larger burrs, flashes, scratches, and thicker oxide layers through plasma polishing, then plasma polishing cannot meet your requirements. Friends, do you now understand the characteristics of plasma polishing?

Finishing process method for deburring, deflashing, trimming from plastic rubber silicone and nylon product parts

How to remove burrs,flash and finish plastic, rubber, silicone and nylon product parts?

During the injection molding process of rubber, plastic, silicone and nylon products, due to mold, process or raw material reasons, a large number of burrs and flash often occur on the edge of the product or in the inner hole. The existence of this burr phenomenon will have a negative impact on the surface quality of the product. The commonly used and simple method of deburring and trimming is to use a scraper for manual processing. Of course, this is only suitable for a small number of products. If large quantities of automated mechanical processing are required, since rubber, plastic, silicone, and nylon products are soft and tough, Conventional vibration/barrel finishing, electrolysis, plasma, and magnetic processes cannot achieve satisfactory results. Today we will share a case of how to deburr, deflash from rubber shin guard products to achieve high-efficiency trimming in large quantities. This finishing process is also suitable for trimming requirements of other plastic, polyester, silicone, nylon, aluminum alloy, zinc alloy and other product parts with soft, light and hard-to-break burrs such as mobile phone cases, watch bands, O-rings and other plastics.

    • jerrylu
    • 2024-05-21
    • 0 Comments

     

Process method for deburring and deflashing on shin guards of rubber plastic products

1. The state of the rubber shin guards before deburring
How to deburr and deflash from rubber shin pad

Materials:

Eucommia rubber

Appearance:

Long burrs, rough edge

Shape:

Special shape

Size:

150*120 MM

Process before trimming:

Injection molding

Process after trimming:

Forming

2. Deburring and deflashing requirements
  • Batch deburring, deflashing, trimming
3. Detailed process of deburring and deflashing from rubber shin guards:
Process Steps (1) freeze deburring and deflashing
Mahines and Equipments deburring machine for plastic rubber products
Amplitude and Speed high speed
Finishing Abrasive Media plastic elastic sand
Ratio of abrasive to workpiece 4:1
Compound Liquid none
Water none
Process Time 10 minutes
4. Effect comparison of rubber shin pad after removing burrs
How to debur and deflash from rubber and plastic shin guards
Rubber plastic shin guards frozen deburring deflashing effect

5. Additional instructions
  • Due to process limitations, rubber, aluminum alloy, zinc alloy and other products made by injection molding, casting and other processes often have a long layer of burrs around them after molding. This kind of burr is very thin, easy to bend, and has a certain degree of toughness, so simple mechanical and physical removal methods are not effective. Nowadays, a special deburring and trimming machine for rubber and plastic products is used to place the workpieces in batches into a special barrel and roll them. During the processing, liquid nitrogen is added to reduce the surface of the workpieces to more than 100 degrees below zero in a short time, making the edges of the workpieces The burrs and flash will become brittle and broken, but the body of the workpiece will not be affected. While the workpiece is rolling, it is supplemented by high-speed moving plastic elastic sand abrasives that impact the surface of the product, which can accelerate the removal of burrs and rough edge on the edges of the product or inside the holes to improve the surface effect.
  • Another thing to note is that in order to test different processes, we divided the sample into four small pieces and finally determined the optimal deburring plan.

6. Final summary
  • In this case, we demonstrate an automated finishing and trimming process that uses a freezing process to remove burrs and flash from the outer surface and internal holes of rubber shin guards.
  • If you have problems with deburring, deflashing and trimming aluminum alloy, zinc alloy, rubber, nylon, silicone, plastic product parts or the following products using casting, injection molding and other processes and need professional technical support, you can refer to the above cases:
    How to deburr plastic
    Quickly remove burrs from plastic products
    Solution to burrs in injection molded parts
    How to remove plastic burrs and flash edges
    Deburring methods for plastic products
    How to quickly deal with plastic flash
    How to deal with plastic flash
    How to solve the problem of burrs on plastic products
    Deburring plastic products
    Tips for deburring plastic parts
    Rubber deburring process
    Advanced methods for rubber deburring
    How to quickly remove burrs from rubber products
    Rubber deburring equipment
    How to remove burrs from silicone
    Treatment method for silicone burrs

What is an automatic wastewater treatment system?

About Automatic Wastewater Treatment System

  • 1.What is an automatic wastewater treatment system?
  • The automatic wastewater treatment system is a small complete set of environmentally friendly treatment equipment that automatically recovers and treats sewage and sludge generated during the grinding, finishing and polishing process.
    You only need to connect the wastewater generated during the finishing and polishing process to the working tank of the automatic sewage treatment machine, and it will handle the rest. If your factory needs to continuously produce finishing, polishing, cleaning wastewater and waste liquid every day and you don’t know how to deal with it, ShineTec can provide you with this professional integrated complete set of sewage treatment equipment and machinery to solve your environmental discharge problems.

    ShineTec's automatic wastewater treatment system
  • 2. Why is wastewater treatment needed?
  • The finishing process of deburring and descaling requires the use of various abrasive media and Chemical Finishing Compound. Most abrasive media such as ceramic media, high alumina porcelain media, resin media and other materials will produce a large amount of sludge due to wear during the grinding process. This sludge is mixed with metal debris and other impurities that fall off the workpiece due to wear and tear. If not cleaned in time, the surface of the product will be worn. Therefore, during the finishing and polishing process, it is necessary to flush with water from time to time, and then flush with clean water. The waste water discharged from the drain outlet of tumbling finishing machine must be treated Environmentally friendly treatment and discharge directly.
    In addition, a large amount of clean water is used during the finishing process, and it is also mixed with chemical additives such as polishing compound. For environmental reasons, you cannot discharge this wastewater directly into the surrounding environment.
    This automatic sewage treatment system can solidify and dry sludge, recycle wastewater, and meet environmental protection requirements. It can well solve the problem of not knowing how to treat wastewater.

  • 3. Can the water treated by the automatic wastewater treatment system be reused?
  • Yes, the water treated by the automatic sewage treatment machine can be reused in the tumbling finishing machine.
  • 4. How does the automatic wastewater treatment system treat the sludge and sewage generated after finishing and polishing?
  • The wastewater discharged after finishing and polishing is introduced into the wastewater treatment tank of the automatic sewage treatment machine, which is also called a coagulation sedimentation tank. By adding some treatment agents to the water, usually called coagulants or coagulants, the particles that are difficult to settle in the water can aggregate with each other to form colloids, and then combine with other impurities in the water to form larger flocs. The large organic particles in the polishing liquid are adsorbed by the flocs, increase in volume and sink. The well-reacted wastewater is pumped into the filter press system for solid-liquid separation, forming mud cakes for solid waste treatment. The filtered water has been discharged up to standard and can be used for secondary use.
    automatic sewage treatment machine sludge filter press
    automatic sewage treatment machine wastewater filtration
  • 5. Can an automatic wastewater treatment system reduce the amount of water used in the finishing process?
  • Yes, because the water treated by the automatic sewage treatment machine can be reused, which will greatly reduce the amount of water consumed by your factory in finishing and polishing processes. The recycled water can be recycled 3-5 times, which can save you a lot of water costs.
  • 6. How does the automatic wastewater treatment system reduce the cost of sludge treatment?
  • After the wastewater containing sludge is filtered by this sewage treatment system, the solid content of the mud cake can reach 50%-70%. The volume and weight are greatly compressed, and solid waste can be directly treated without the need for large-capacity sedimentation. The pool is handled by dedicated staff. The cost of sludge treatment can be greatly reduced.
  • 7. What are the benefits of using a wastewater treatment system?
  • 7.1 The disposal of large amounts of waste liquid generated during large-scale finishing and polishing processes is a very troublesome problem. It costs a lot to deal with it through a professional third-party recycling company. Configuring a large-capacity sedimentation tank yourself also requires a lot of capital and labor costs. Now you can invest in a set of small wastewater treatment equipment and machinery at one time. It perfectly solves the problem of environmental protection and is really a cost-effective solution.

    7.2 Recycling after sewage treatment can save you a lot of water costs and also bring you direct benefits.

    7.3 During the finishing and polishing process, a large amount of recycled water can be recycled to clean the workpiece to avoid debris and impurities during the finishing process from damaging the surface of the workpiece, causing problems such as pitting and scratches. It also improves the surface quality of the workpiece and avoids worries about using water. If the amount is too large, it will reduce the cleaning time during the grinding process and reduce the finishing efficiency or produce defective products.

    7.4 Easy to operate. The automatic sewage treatment machine provided by ShineTec is a set of fully automated water treatment equipment that is easy to operate and use. The flow of waste liquid between systems is all through pipelines, without manual handling and no complicated structure. The machine has a special electrical control box for automatically controlling the machine’s operation. It does not require specialized operators and is easy to operate.

    7.5 Extremely low running costs. The consumables used daily after the automatic sewage treatment system is purchased are coagulants or coagulants used in the sedimentation treatment tank. This amount is very small, so the cost is extremely low.

  • 8. Where can automatic wastewater treatment system be used?
  • ShineTec’s automatic sewage treatment system can be applied to wastewater and waste liquid generated in a variety of industries, such as finishing and polishing, cleaning, electroplating, printing and dyeing, spraying, ink production, printing, mechanical processing and other industries. It has the characteristics of fast water output, clear filtrate, The filter residue has the characteristics of good peelability and mud biscuits.
  • 9. How long is the service life of an automatic wastewater treatment system?
  • The automatic sewage treatment system is a one-time investment that can be used for a long time. The consumables usually needed are coagulants or coagulants, as well as filter cloth used in the filter press system.
  • 10. Are there different models of automatic wastewater treatment system?
  • According to the amount of water processed by the filter press system, we introduce the following specifications and models:

    10.1 Water treatment capacity: 1-3 cubic meters, Machine dimensions: 2100*850*1600 mm.

    10.2 Water treatment capacity: 3-5 cubic meters, Machine dimensions: 2300*1300*1800 mm.

    10.3 Water treatment capacity: 5-8 cubic meters, Machine dimensions: 2500*1300*1800 mm.

    10.4 Water treatment capacity: 8-10 cubic meters, Machine dimensions: 3000*1300*1800 mm.

    As a manufacturer of automatic sewage treatment equipment, we can also design and customize a fully automatic sewage treatment system that meets your requirements based on your actual needs. If you don’t know where the best automatic wastewater treatment system is or which is the best automatic sewage treatment equipment, you can contact us and we can give you a satisfactory answer.

  • 11. How many operators are required for an automatic wastewater treatment system?
  • Automatic sewage treatment system do not require specialized operators. This is a small, fully automatic sewage treatment equipment. The operation is very simple. It only requires simple training to operate it. It can be operated when treatment is needed. There is no need to arrange full-time personnel.
  • 12. What are the main components of an automatic wastewater treatment system?
  • The automatic sewage treatment system is a set of small integrated sewage treatment equipment. It is specially designed for use scenarios with limited space and small amount of water treatment. Its main components are as follows:

    12.1 Reservoir. Includes a sedimentation tank and treated clear water tank. The sedimentation tank is used for preliminary treatment of injected sewage.

    12.2 Dosing device. The coagulant is extracted from the dosing metering pump and put into the sedimentation tank quantitatively. After mechanical stirring, the tiny molecules in the sewage undergo a flocculation reaction and accelerate precipitation.

    12.3 Filtering system. The sewage in the sedimentation tank is extracted by a pneumatic diaphragm pump and sent to the filter press. After pressure filtration, the sludge is pressed into mud cake. The sewage is filtered and turned into clean water, which flows into the clean water tank for recycling.

What is the best deburring, finishing and polishing process method?

In the manufacturing process of machining, powder metallurgy, plastic injection molding, metal casting, electronic appliances, medical equipment, aerospace, 3D printing, jewelry, instrumentation, jewelry and other industries, we will all encounter surface treatment problems. We are also frequently exposed to the two professional terms finishing and polishing, so do you know what the differences are between different finishing and polishing process methods? What is the best commonly used finishing and polishing process? The following is an introduction to various finishing and polishing processes.

1. What is finishing?

Finishing uses abrasive tools and media to cut the surface of the workpiece under a certain pressure. Product workpieces can be made of various metal or non-metallic materials, and the processed surface shapes include flat surfaces, arc surfaces, concave and convex surfaces, threads, tooth surfaces and other special-shaped surfaces.
Finishing can be achieved by manual or mechanical automation. It is the preliminary stage of surface treatment. The main purpose is to remove scale, deburr and level.
According to the different grit size of the abrasive media, it is divided into heavy cutting, medium cutting and light cutting, which correspond to different cutting strengths. The stronger the cutting force, the higher the efficiency, but the higher the surface roughness.
The manual finishing method mainly uses grinding tools such as grinding wheels, sandpaper, wire brushes, and grindstones to grind the surface of the workpiece. It is a surface treatment process with maximum cutting intensity and has the greatest impact on the accuracy and appearance dimensions of the product. The advantage of manual finishing is that it requires less equipment investment, is convenient and fast, and is suitable for various complex cavities. The disadvantages are high labor costs, low efficiency, unfriendly environment, poor safety, and inconsistent surface quality. It is a process that will be phased out.
The automated finishing method uses professional finishing machines and equipment to perform batch mechanized grinding of the workpiece surface. At present, there are several special machines and equipment below that can be used for automatic finishing in large quantities.

Surface grinding lathe deburring and scale grinding and polishing

Grinding lathe

Divided into internal and external cylindrical or surface grinders, belt sanders, grinders, etc. Internal and external cylindrical grinders are used to grind the cylindrical internal and external surfaces of product workpieces. Surface grinders are used to grind flat parts to obtain a smooth and flat outer surface. Abrasive belts and grinders are also operated by manual single parts and are suitable for medium and large-sized components. The advantages of this kind of grinding machine are simple operation, high cutting force, the ability to cut and grind different parts with different strengths, and the ability to process products of medium and large dimensions. The disadvantage is that the purchase cost of the machine equipment is high and it can only process a single product. It can only grind product parts with simple shapes, but cannot handle workpieces with complex surfaces and irregular internal holes, holes, gaps and other parts.

Robotic deburring, grinding and polishing of automotive aluminum alloy wheels

Industrial robot

This is an advanced grinding processing equipment. By setting a fixed motion path through PLC programming, and using the grinding head, workpieces with complex internal and external surfaces can be automatically ground. For example, some stainless steel, aluminum alloy, zinc alloy and other kitchen utensils, bathroom hardware, car wheels, etc. The advantage of this equipment is that grinding and finishing can be integrated into one piece, and different surface treatment processes can be achieved by replacing different grinding heads. It is also suitable for processing medium and large complex-shaped product parts. It can also control the finishing of a certain part of the product individually, and has strong defect repair capabilities. The disadvantage is that the purchase cost is high, the investment in supporting facilities is also large, it can only be processed in a single piece, the efficiency is low, the operation and maintenance are complicated, and the inner surface of the product cannot be processed.

Sandblasting, deburring, descaling, grinding and polishing

Sand blasting machine

This is the most widely used grinding treatment method. Sandblasting is a machine that uses compressed air as power to eject high-speed abrasive sand chip to remove scale, burrs, and flash on the surface of the product. Suitable for some medium and large-sized products, such as cast iron parts, forgings, machined parts, large turbine blades, etc. Shot blasting is to throw small steel shots through a high-speed rotating impeller, impact the surface of the part, and remove the oxide layer. The advantage of this grinding method is that it is suitable for extra large or medium-sized product workpieces, can handle complex shapes, and can improve the metallographic structure of the product surface and improve the surface mechanical properties. The disadvantages are high investment cost, small batch processing at one time, not suitable for small workpiece products, high surface roughness after treatment, and cannot handle the inner surfaces of the product’s inner holes, pipes, gaps, etc.

Abrasive flow,inner hole deburring, descaling, polishing

Abrasive flow machining for deburring and descaling

Also called AFM deburring and finishing. This method is widely used for in-hole deburring and descaling of various precision parts. Its operating principle is to mix diamond, white corundum sand, silicon carbide and other abrasive sand with the abrasive flow to prepare a semi-fluid finishing media, which quickly passes through the holes inside the workpiece under the pressure generated by the machine, and uses the abrasive sand to polish the inner wall. Cutting to achieve the finishing effect of deburring and descaling. The advantage of this method is that it is particularly suitable for deburring and polishing the inner surfaces of precision parts with complex inner holes. The disadvantage is that its finishing efficiency is low and it cannot be processed in batches. It can only be used for polishing inner holes below 500mm. The cutting amount is only within a few microns. It cannot remove large burrs, turning lines, oxide skin, rust spots, etc. Special tooling fixtures are also required, and the one-time investment cost is also high.

Magnetic grinding, deburring, polishing, descaling, degreasing, cleaning

Magnetic polishing machine

Magnetic polishing uses magnetic force to drive the stainless steel needles in the working barrel of the machine to produce high-frequency motion and impact the internal and external surfaces of the workpiece to achieve the effect of deburring, descaling, deflashing, brightening from the inner holes, dead corners, gaps, and other parts of the hardware workpiece. Suitable for finishing and polishing metal or hard plastic non-metal workpieces. The advantage of this polishing method is that it is suitable for irregular and complex special-shaped parts. Deburring, descaling and polishing can be completed in one go. It does not deform, does not affect the dimensional accuracy of the workpiece, and does not damage the surface. The surface roughness can reach Ra0.1-Ra0.01. It can be processed quickly in batches. It takes 5-20 minutes in polishing, has high efficiency, no loss of consumables, and low investment. The disadvantage is that the machine’s processing capacity is generally within tens of kilograms at a time, and it is only suitable for workpieces of smaller sizes, such as small hardware, small ornaments, precision parts, etc.

tumbling finishing and polishing to deburr, descale, deflash, derust, chamfer, degrease

Mass finishing machine

This is the most widely used surface finishing method and is also a professional equipment in the field of batch finishing. Contains models with multiple motion patterns, using vibratory finishing, centrifugal barrel finishing, centrifugal disc finishing and other methods drive the tumbling deburring media and workpiece to tumble and rotate in the working barrel of the machine, let the abrasive to cut on the surface of the workpiece to remove burrs and oxidation skin, flash, oil stain and other effects. The abrasive media has a very high hardness after being sintered at high temperature, like stones, so it is generally called ceramic media, also called tumbling media. Materials include brown corundum, white corundum, silicon carbide, etc. Commonly used shapes include triangle, spherical, cylindrical, three-star, cone, and tetrahedron. There are also various specifications and sizes, which are used to finish workpieces of different materials and shapes. The advantages of this finishing method are wide application range, large batches and high efficiency. The shape of the workpiece can be irregular and special-shaped. Internal holes, dead corners, cracks, cross holes and other parts can be finished. The size can range from a few millimeters to 3 meters, the dimensional accuracy of the product is not affected, and the workpiece materials can be supported from non-ferrous metals, ferrous metals, powder metallurgy, plastic, acrylic, rubber, bamboo, marble, glass and other non-metal materials. The investment cost is low and the operation is simple and convenient. The disadvantage is that it can only finish the entire workpiece and cannot control the finishing of a single part. For example, it is impossible to level a certain convex part of the product. Also, if the inner hole or pipe length of some products exceeds 30mm, the effects of rust removal and descale on the inner surface will not be satisfactory.

2. What is polishing?

Polishing refers to a processing method that uses manual, mechanical, chemical or electrochemical methods to reduce the surface roughness of the workpiece to obtain a shiny and bright surface. Generally speaking, polishing is performed after finishing and is a later stage of surface treatment. Polishing cannot improve the dimensional accuracy or geometric shape accuracy of the workpiece, but is intended to obtain a smooth surface or mirror gloss. Sometimes it is also used to eliminate gloss (matting), such as to obtain a matte effect. The main polishing methods are as follows:
1. Artificial polishing.
The manual polishing method mainly uses professional tools such as polishing wheels, polishing heads, and angle grinders to apply polishing paste on the polishing wheel and press it against the product surface while rotating at high speed, allowing the abrasive to roll and micro-cut the workpiece surface. This results in a shiny surface effect. The surface roughness of the polished product can reach Ra0.6~0.01 micron. Like manual grinding, the advantage of manual polishing is that it requires less equipment investment, is convenient and fast, and is suitable for irregular shapes and internal surfaces. By using polishing and abrasive media of different mesh sizes, a mirror polishing effect can be achieved, which is the best among all polishing methods. The disadvantages are that the labor cost is too high, training is required to get on the job, efficiency is low, the environment is unfriendly, safety is poor, and surface quality is inconsistent. It is a process that will be phased out. At present, it is only used when polishing some medium and large kitchen and bathroom products.
2. Mechanical polishing. Use professional polishing machines and equipment to perform batch mechanized polishing of workpiece surfaces. At present, there are several special machines and equipment below that can be used for automatic polishing in large quantities:

Automated industrial robot polishing mobile phone case

Industrial robot

A cloth wheel is installed on the robotic arm and products with irregular and complex surfaces can be polished according to the set motion trajectory. At present, many kitchen and bathroom hardware, decoration, automobile wheel and other industries have begun to use this robot-automated polishing method extensively. By replacing the cloth wheel and polishing paste with a finer grit size on the surface of the product that has been ground in the previous process, the same equipment can achieve the polishing function. Its advantage is that it is suitable for processing medium and large product parts with complex shapes, and can also achieve mirror effects. The disadvantage is that the purchase cost is high and the investment in supporting facilities is also high. It can only be processed in a single piece, with low efficiency. The operation and maintenance are complicated. It cannot handle the inner surfaces of the product such as holes and gaps.

Shot blasting, shot blasting polishing machine

Shot blasting machine

Shot blasting or shot blasting machines can also be used for polishing. They use stainless steel shot media to hammer the surface of metal parts at high speed to increase surface density and achieve the effect of improving surface gloss and brightness. The advantage is that it is suitable for medium and large parts, and can also handle complex curved surface cavities. The disadvantage is that the polishing roughness is high, which can only increase the gloss and brightness, but cannot achieve a mirror-like polishing effect. In addition, it can only be used for surface polishing of product parts made of metal.

Magnetic polishing machine

Magnetic polishing machine

Magnetic polishing machine integrates the finishing and polishing processes into one. It uses the high-speed rotation and rolling of stainless steel needles to impact the surface of the workpiece. It removes burrs, scale, oil and impurities while improving the surface brightness of the product, achieving the purpose of polishing. The advantages are high efficiency, no loss of consumables media, and low investment. The disadvantage is that the number of processes is small, it is only suitable for small product parts, and the surface roughness after polishing is relatively high.

mass tumbling polishing

Tumbling polisher

It can also be called a mass polishing machine, polishing tumbler. Based on the rough finishing of descaling and deburring in the previous process, by replacing different polishing media, the roughness of the product surface can be reduced and the brightness can be improved. Abrasive media for polishing are generally usedporcelain polishing media, high-density porcelain media (In fact, this is also a type of porcelain, but the alumina content in it is higher than that of common porcelain media, can reach about 95%, so the density is higher than that of common porcelain media), white corundum polishing media, chrome corundum polishing media, stainless steel polishing media. The principle is to use high-density, high-hardness tumbling media to hit the surface of metal products to change the tightness of the arrangement between grains. At the same time, the micro-powder contained in the polishing media is used to perform micro-cutting on the surface, reducing roughness and improving brightness and gloss. There is also a polishing method commonly known as polishing, which is to use barrel tumbling polishing machine uses plant bio-degradable such as wood chips, bamboo chips, corn cobs, and walnut shells. It uses the coarse fibers on the surface of this material to simulate the cloth wheel used for manual polishing, and with the polishing paste, it passes Dozens of hours of slow and micro-finishing achieve a mirror-like effect. The advantage of rotary tumbling polishing is that it has a wide range of applications, large batches, and high efficiency. It can be used for product parts with various special shapes and complex surfaces. The materials can also be metal and non-metal materials. The operation is simple and convenient. The disadvantage is that the polishing effect cannot reach the mirror state of a manual cloth wheel. The smooth polishing method can only achieve an effect close to a mirror surface at best.

3. Chemical polishing.
Chemical polishing is a method that relies on the chemical corrosion of chemical reagents to selectively dissolve uneven areas on the surface of the product to eliminate oxide scale and etch and level it. Using strong acid or alkaline solutions such as sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid or sodium hydroxide, the principle is that the convex parts on the surface of the metal parts have a different electrode potential than the concave parts in the solution, resulting in different dissolution rates, causing the convex parts to It dissolves preferentially over concave parts and can remove rough surface roughness and obtain a smooth finish ranging from an average of several microns to tens of microns. The advantage of this polishing method is that the equipment is simple and only requires a container to hold the solution. It can handle thin tubes, parts with deep holes and complex shapes, and has high production efficiency. The disadvantages are obvious: it is not environmentally friendly, has serious pollution, emits a large amount of harmful gases, has a short service life of the polishing solution, and is difficult to regenerate. The polishing effect is not as good as electrolytic polishing.

Chemical deburring and descaling, polishing

Chemical polishing process

Comparison of surface effects of chemical process methods for deburring,descaling and polishing

Comparison of chemical polishing effects of workpieces

4. Electrolytic polishing.
Electrolytic polishing is essentially chemical polishing. The acid solution is put into the electrolytic tank, the workpiece is used as the anode and connected to the power supply, the lead electrode in the electrolytic tank is used as the cathode, and direct current is passed on. Due to the high current of the burrs and oxide scale on the surface of the part, the corresponding dissolution speed in acid solution is fast. This uneven dissolution speed dissolves burrs or oxide layers first, which plays a smooth and polishing role for the entire workpiece. If the surface is too rough, it is not suitable to electrolytic polish directly. It is best to use mechanical polishing to rough finish it once, and then electrolytic polishing can make the surface finish of the parts reach a very high level, and even achieve a mirror-like gloss effect. Some daily products and handicrafts such as decorative hardware, lamps, kitchen and bathroom supplies made of stainless steel, aluminum alloy, and zinc alloy can be electropolished to obtain a satisfactory surface effect. The advantage of electrolytic polishing is that it is suitable for processing parts with special-shaped and complex surfaces, some parts that cannot be mechanically polished, and internal deep holes, thin tubes, gaps, and dead corners. It has high production efficiency and good polishing effect. The disadvantages are the same as chemical polishing: serious pollution, poor safety, unfriendly to the environment, complicated preparation of electrolytic acid, short service life, and difficult regeneration. It is only suitable for polishing steel, aluminum, copper, nickel and various alloys.

Electrolytic method for deburring, descaling and polishing

Electrolytic polishing process

Comparison of workpiece effects of electrolytic polishing process

Comparison of surface effects of electrolytic polishing workpieces

5. Plasma polishing.
Also called nano-polishing, it is a new environmentally friendly polishing process that can be called a polishing artifact. The principle of plasma polishing is relatively complex. It involves three polishing mechanisms. One is the tip discharge effect: raised parts such as surface burrs have low resistance and are easily broken down in a high-voltage electric field, forming discharge channels. The burrs are dissolved and sharp edges are formed. The corners are rounded and the flatness is improved; the second is the particle bombardment effect: the polishing solution and the workpiece are instantly short-circuited, causing a large amount of heat to vaporize the polishing solution. When the ions of this gas reach a certain number, plasma is formed. The form of this plasma is very high. When it collides with the surface of the workpiece, the oxide layer on the metal surface will be loosened and decomposed, and the surface will be evenly polished. The third is the gas film blasting scour effect: the plasma gas film surrounding the product is rapidly blasted under the influence of electromagnetic field and high temperature, and the oxide layer on the surface of the workpiece is peeled off under the action of tangential cavitation force. The combined action of these three effects instantly The surface of the workpiece will be shiny. Nano-polishing can control the dimensional accuracy of the workpiece within 0.002mm, and the roughness can reach Ra0.01. The polished product has improved smoothness, precision, hardness and durability. It is widely used in the field of fine polishing of high-end products, such as the furniture, bathroom and tableware industries. : handles, handles, faucets, copper parts; glasses industry: glasses frames, glasses frames; aerospace manufacturing: aircraft engine blades; medical device manufacturing: titanium alloys, stainless steel instruments and other fields.
The advantages of plasma polishing are wide application, fast polishing speed (can be completed within ten seconds to two minutes), high precision, good effect, and can achieve electroplating-level mirror effect. Its nano-polishing liquid is very environmentally friendly, and the waste liquid can be discharged directly without causing pollution. The equipment adopts automatic control, which is simple to operate, convenient to maintain and has low labor cost. It can polish some irregular and complex surfaces, dead corners, holes and other parts. It can also produce a passivation film on the surface of the workpiece to keep the surface bright and effectively prevent oxidation. The disadvantage is that the initial investment in equipment is large, and the preparation of workpiece polishing fluids of different materials is complicated. It can only polish conductive materials such as stainless steel, copper, zinc and their alloys. It is not suitable for excessively large burrs, pits, and excessively thick oxide layers. Suitable for polishing medium to large size product parts.

Plasma polisher for deburring, descaling, chamfering, nano polishing machine

Plasma (nano) polishing machine

Comparison of plasma and nano polishing workpiece effects

Comparison of plasma (nano) polishing workpiece effects

error: 网站内容有版权保护!!